Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2108.04816v2

ABSTRACT

The understanding of the public response to COVID-19 vaccines is the key success factor to control the COVID-19 pandemic. To understand the public response, there is a need to explore public opinion. Traditional surveys are expensive and time-consuming, address limited health topics, and obtain small-scale data. Twitter can provide a great opportunity to understand public opinion regarding COVID-19 vaccines. The current study proposes an approach using computational and human coding methods to collect and analyze a large number of tweets to provide a wider perspective on the COVID-19 vaccine. This study identifies the sentiment of tweets using a machine learning rule-based approach, discovers major topics, explores temporal trend and compares topics of negative and non-negative tweets using statistical tests, and discloses top topics of tweets having negative and non-negative sentiment. Our findings show that the negative sentiment regarding the COVID-19 vaccine had a decreasing trend between November 2020 and February 2021. We found Twitter users have discussed a wide range of topics from vaccination sites to the 2020 U.S. election between November 2020 and February 2021. The findings show that there was a significant difference between tweets having negative and non-negative sentiment regarding the weight of most topics. Our results also indicate that the negative and non-negative tweets had different topic priorities and focuses. This research illustrates that Twitter data can be used to explore public opinion regarding the COVID-19 vaccine.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.03.21249175

ABSTRACT

The COVID-19 pandemic has been particularly threatening to the patients with end-stage kidney disease (ESKD) on intermittent hemodialysis and their care providers. Hemodialysis patients who receive life-sustaining medical therapy in healthcare settings, face unique challenges as they need to be at a dialysis unit three or more times a week, where they are confined to specific settings and tended to by dialysis nurses and staff with physical interaction and in close proximity. Despite the importance and critical situation of the dialysis units, modelling studies of the SARS-CoV-2 spread in these settings are very limited. In this paper, we have used a combination of discrete event and agent-based simulation models, to study the operations of a typical large dialysis unit and generate contact matrices to examine outbreak scenarios. We present the details of the contact matrix generation process and demonstrate how the simulation calculates a micro-scale contact matrix comprising the number and duration of contacts at a micro-scale time step. We have used the contacts matrix in an agent-based model to predict disease transmission under different scenarios. The results show that micro-simulation can be used to estimate contact matrices, which can be used effectively for disease modelling in dialysis and similar settings.


Subject(s)
COVID-19 , Kidney Failure, Chronic
SELECTION OF CITATIONS
SEARCH DETAIL